N-34 Gas Stoichiometry

Target: I can use gas laws to help me perform stoichiometry problems involving gases.

Link to YouTube Presentation: https://youtu.be/HgeCwZgoqcl

N-34 Gas Stoichiometry Its still just regular stoichiometry! Just need a gas law equation instead of a conversion factor sometimes!

Gas Stoichiometry

*Sometimes you can use **MOLAR VOLUME** as shortcuts **22.4 L/mol at STP** or

24.8 L/mol at SATP (S-Ambiant-TP=298K instead of 273K)

<u>Sample problem 1</u>

 CH_4 burns in O₂, producing CO_2 + $H_2O(g)$. A 1.22 L CH_4 cylinder, at 15°C, has a pressure of 328 kPa.

- a) What volume of O_2 at 100kPa and 298K will be required to react completely with all of the CH_4 ?
- First: $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$
- Pathway:
 - $L \text{ of } A \rightarrow \text{ mol } A \rightarrow \text{ mol } B \rightarrow L \text{ of } B$ $PV = nRT \qquad Mole \text{ Ratio} \qquad PV = nRT$ $of A \qquad of B$

<u>Sample problem 1</u>

CH₄ burns in O₂, producing CO₂+ H₂O(g). A 1.22 L CH₄ cylinder, at 15°C, has a pressure of 328 kPa. a) What volume of O₂ at 100kPa and 298K will be required to react completely with all of the CH₄? CH₄(g) + 2O₂(g) \rightarrow CO₂(g) + 2H₂O(g)

Lof A PV = nRT

of A

P = 328 kPa, V = 1.22 L, T = 288 K

PV = nRT $\frac{(328 \text{ kPa})(1.22 \text{ L})}{(8.31 \text{ kPa} \text{-}L/K \text{-}mol)(288 \text{ K})} = n = 0.167 \text{ mol CH}_{4}$

Sample problem 1

CH₄ burns in O₂, producing CO₂+ H₂O(g). A 1.22 L CH₄ cylinder, at 15°C, has a pressure of 328 kPa. a) What volume of O₂ at 100kPa and 298K will be required to react completely with all of the CH₄? CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(g)

moles of $A \rightarrow$ moles of B mol $CH_4 \rightarrow$ mol O_2 : Mole Ratio

<u>Sample problem 1</u>

CH₄ burns in O₂, producing CO₂+ H₂O(g). A 1.22 L CH₄ cylinder, at 15°C, has a pressure of 328 kPa. a) What volume of O₂ at 100kPa and 298K will be required to react completely with all of the CH₄? CH₄(g) + 2O₂(g) \rightarrow CO₂(g) + 2H₂O(g)

mol B \rightarrow L of B P= 100 kPa, n= 0.334 mol, T= 298 K PV = nRT of B

 $\frac{(0.334 \text{ mol})(8.31 \text{ kPa}\cdot\text{L/K}\cdot\text{mol})(298 \text{ K})}{(100 \text{ kPa})} = V \text{ of } O_2 = 8.28 \text{ L}}$

Sample problem 1 continued

CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(g) b) How many grams of H₂O(g) are produced?

Sample problem 1 continued

CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(g) b) How many grams of H₂O(g) are produced?

<u>OR</u> use moles of O₂ and a different mole ratio!

<u>Sample problem 1 continued</u>

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ c) What volume of CO_2 (at STP) is produced if only 2.15 g of the CH_4 was burned? $g \text{ of } A \rightarrow mol A \rightarrow mol B \rightarrow L of B$ Molar Mass Mole Ratio PV = nRT of A of **B** 2.15 g-CH_4 1 mol CH₄ 1 mol CO₂ = 0.134 16.05 g CH_4 1 mol CH_4 mol CO₂ P = 101.3 kPa, n = 0.134 mol, T = 273 K PV = nRT $(0.134 \text{ mol})(8.31 \text{ kPa}\cdot\text{L/K}\cdot\text{mol})(273 \text{ K}) = V = 3.00 \text{ L CO}_2$ (101.3 KPa)

Sample problem 1 continued

 $\begin{array}{c|c} 2.15 \ \text{g-CH}_4 & 1 \ \text{mol-CH}_4 & 1 \ \text{mol-CO}_2 & 22.4 \ \text{LCO}_2 \\ \hline 16.05 \ \text{g-CH}_4 & 1 \ \text{mol-CH}_4 & 1 \ \text{mol-CH}_4 \\ \end{array}$

= 3.00 L CO₂

<u>Sample problem 2</u>

Ammonia (NH₃) gas can be synthesized from nitrogen gas + hydrogen gas. What volume of ammonia at 450 kPa and 80°C can be obtained from the complete reaction of 7500 g hydrogen? First: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

 $g A \rightarrow mol A \rightarrow mol B \rightarrow L of B$

PV = nRT P = 450 kPa, n = 2475 mol, T = 353 K

 $\frac{(2475 \text{ mol})(8.31)(353 \text{ K})}{(450 \text{ KPa})} = \text{V} = 16135 \text{ L} \text{ of } \text{NH}_3$

<u>Sample problem 3</u>

Hydrogen gas (and NaOH) is produced when
sodium metal is added to water. What mass of Na
is needed to produce 20.0 L of H_2 at STP?First: $2Na(s) + 2H_2O(I) \rightarrow H_2(g) + 2NaOH(aq)$
PV = nRT $P = 101.3 \ kPa, V = 20.0 \ L, T = 273 \ K$

 $\frac{(101.3 \text{ kPa})(20.0 \text{ L})}{(8.31 \text{ kPa}\cdot\text{L/K}\cdot\text{mol})(273 \text{ K})} = n = 0.893 \text{ mol } \text{H}_2$

$$\frac{0.893 \text{ mol H}_2}{1 \text{ mol H}_2} = 41.1 \text{ g Na}$$

1) What volume of oxygen at STP is needed to completely burn 15 g of methanol (CH₃OH) in a fondue burner? (CO₂ + H₂O are products)

2) When sodium chloride is heated to 800°C it can be electrolytically decomposed into Na metal & chlorine (Cl₂) gas. What volume of chlorine gas is produced (at 800°C and 100 kPa) if 105 g of Na is also produced?

3) What mass of propane (C_3H_8) can be burned using 10<u>0</u> L of air at SATP? Note: 1) air is 20% O₂, so 100 L of air holds 2<u>0</u> L O₂, 2) CO₂ and H₂O are the products of this reaction.

4) A 5.0 L tank holds 13 atm of propane (C_3H_8) at 10°C. What volume of O_2 at 10°C & 103 kPa will be required to react with all of the propane?

- 5) Nitroglycerin explodes according to: $4 C_3 H_5 (NO_3)_3 (I) \rightarrow 12 CO_2(g) + 6 N_2(g) + 10 H_2 O(g) + O_2(g)$
- a) Calculate the volume, at STP, of each product formed by the reaction of 100 g of $C_3H_5(NO_3)_3$.

Have to do this for EACH of the products! Do it four times!

- 5) Nitroglycerin explodes according to: $4 C_3H_5(NO_3)_3(I) \rightarrow 12 CO_2(g) + 6 N_2(g) + 10 H_2O(g) + O_2(g)$
- b) 200 g of C₃H₅(NO₃)₃ is ignited (and completely decomposes) in an otherwise empty 50 L gas cylinder. What will the pressure in the cylinder be if the temperature stabilizes at 220°C?

Tricky! Moles of "B" is actually the TOTAL number of moles of gas in the reaction – so it should be 29 mol gas/4 mol $C_3H_5(NO_3)_3$

<u>Answers</u>

1) $3O_2(g) + 2CH_3OH(I) \rightarrow 2CO_2(g) + 4H_2O(g)$ # L O₂= 15 g CH_3OH 1 mol CH_3OH 3 mol O_2 **22.4** L O₂ 32.05 g CH₃OH 2 mol CH₃OH 1 mol O₂ $= 15.7 L O_{2}$ 2) $2NaCl(I) \rightarrow 2Na(I) + Cl_2(g)$ # mol $Cl_2 = 105$ g Na 1 mol Na 1 mol Cl_2 = 2.284 mol Cl_2 22.99 g Na 2 mol Na PV = nRT P = 100 kPa, n = 2.284 mol, T = 1073 K $(2.284 \text{ mol})(8.31)(1073 \text{ K}) = \text{V} = 204 \text{ L} \text{Cl}_2$ (100 KPa)

3) $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$				
#a -	20 L O ₂	1 mol O ₂	1 mol C ₃ H ₈	44.11 g C ₃ H ₈
" 9 C ₃ H ₈ =		24.8 L O ₂	5 mol O ₂	1 mol C ₃ H ₈
= 7.1 g C ₃ H ₈				
4) $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$				
PV = nRT n = $(1317 kPa)(5.0 L)$ = 2.8 mol C ₃ H ₈ (8.31)(283 K)				
# mol $O_2 = 2.8 \text{ mol } C_3 H_8$			5 mol $O_2 = 14 \text{ mol } O_2$	
<mark>1 mol C₃H₈</mark> PV = nRT P = 103 kPa, n = 14 mol, T = 283 K				
$\frac{(14 \text{ mol})(8.31)(283 \text{ K})}{(103 \text{ KPa})} = \text{V} = 320 \text{ LO}_2$				

5) $\# \text{ mol } C_3H_5(NO_3)_3 =$ $100 \text{ g } \text{C}_{3}\text{H}_{5}(\text{NO}_{3})_{3}\text{X} \frac{1 \text{ mol } \text{C}_{3}\text{H}_{5}(\text{NO}_{3})_{3}}{227.11 \text{ g } \text{C}_{3}\text{H}_{5}(\text{NO}_{3})_{3}} = 0.4403 \text{ mol}$ $\# L CO_2 = \frac{0.4403 \text{ mol}}{C_3 H_5 (NO_3)_3} \times \frac{12 \text{ mol} CO_2}{4 \text{ mol} C_3 H_5 (NO_3)_3} \times \frac{22.4 \text{ L}}{1 \text{ mol}} = 29.6 \text{ L} CO_2$ # L N₂= $\begin{array}{c} 0.4403 \text{ mol} \\ C_{3}H_{5}(NO_{3})_{3} \end{array} \times \begin{array}{c} 6 \text{ mol } N_{2} \\ 4 \text{ mol } C_{3}H_{5}(NO_{3})_{3} \end{array} \times \begin{array}{c} 22.4 \text{ L} \\ 1 \text{ mol} \end{array} = 14.8 \\ L N_{2} \end{array}$

 $\# L H_2O = {\begin{array}{*{20}c} 0.44\underline{0}3 \text{ mol} \\ C_3H_5(NO_3)_3 \end{array}} \times {\begin{array}{*{20}c} 10 \text{ mol} H_2O \\ H_1O(C_3H_5(NO_3)_3 \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L} \\ L H_2O \end{array}} \times {\begin{array}{*{20}c} 22.4 \text{ L}$

 $\# L O_2 = \begin{array}{c} 0.44\underline{0}3 \text{ mol} \\ C_3H_5(NO_3)_3 \end{array} \times \begin{array}{c} 1 \text{ mol} O_2 \\ 4 \text{ mol} C_3H_5(NO_3)_3 \end{array} \times \begin{array}{c} 22.4 \text{ L} \\ 1 \text{ mol} \end{array} = 2.47 \\ L O_2 \end{array}$

5. # mol C₃H₅(NO₃)₃= 200 g C₃H₅(NO₃)₃x $\frac{1 \text{ mol } C_3H_5(NO_3)_3}{227.11 \text{ g } C_3H_5(NO_3)_3} = 0.8806 \text{ mol}$

mol all gases= $0.8806 \mod C_3 H_5 (NO_3)_3 \times \frac{29 \mod gases}{4 \mod C_3 H_5 (NO_3)_3} = 6.385 \mod all gases$

YouTube Link to Presentation

• <u>https://youtu.be/HgeCwZgoqcI</u>